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M E T H O D  OF C A L C U L A T I N G  S T E A D Y - S T A T E  F L O W S  OF A V I S C O U S  F L U I D  W I T H  

F R E E  B O U N D A R Y  IN V O R T E X - S T R E A M  F U N C T I O N  V A R I A B L E S  

A. S. Ovcharova UDC 532.516.5 

Computations of the motion of a viscous incompressible fluid with a free boundary in vortez- 
stream function variables entail difficulties in the implementation of boundary conditions on 
the free surface. A new approach to the formulation of boundary conditions, which takes into 
account the specifics in 9ivin9 these conditions on the free boundary is proposed. An efficient 
numerical method of  calculatin9 steady-state flows of a fluid is developed and implemented. 
Model computations for  problems that have ezact solutions are performed. 

The main difficulties in the solution of problems in domains having a free boundary are associated 
with the fact that the boundary conditions are given on the previously unknown surfaces to be found in the 
process of solution of the problem. In the present paper, the focus is on two basic aspects: 

(a) development of a mathematical model of motion of a viscous fluid with a free boundary, which 
includes the governing equations describing this motion, and the boundary conditions; 

(b) implementation of the proposed method in a numerical solution of the problem. 
1. M a t h e m a t i c a l  M o d e l .  Let a viscous incompressible fluid of density p, kinematic viscosity u, and 

with coefficient of surface tension c occupy the domain GB: 0 ~< z ~< L and 0 ~< y ~< f(z) ,  where f ( z )  is the 
unknown free surface (Fig. 1). The gravity vector g is parallel to the y axis and is pointing downward. The 
system of equations which describe the fluid motion in the variables ~ (vortex) and r (stream function) is of 
the form 

T y / - T u  o, (L1) 

Ar = (1.2) 

Here Re = voho/u is the Reynolds number; the quantity pv2o is used as the pressure scale, and v0 and h0 are 
the characteristic scales of velocity and depth of the fluid. The stream function is introduced by the relations 

ar ar 
" =  Tu' (1.3) 

The boundary conditions at the lateral and lower boundaries of the domain GB are assumed to be 
specified. The kinematic condition and the continuity conditions for the normal and tangential components 
of the stress vector are set at the free boundary. 

The kinematic condition is of the form 

f t  = v - f zu .  (1.4) 
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Fig. 1 

Defining the vectors of the normal and the tangent to the free surface f(z) at each point of this surface as 

I I-j n =  �9 - -  , s -  , , 

l + f =  2 

we write the continuity condition for the normal component of the stress vector on the free surface: 

Ca-1 1 2 [ Ou (Ou O r ) O v ] ,  1 ft.. (1s 
P-Po= Re R +Re(l+/2) f2~z_A ~+~zz +or] R= r 

Here P is the fluid pressure on the free surface, Po is the external pressure (e.g., atmospheric pressure), R is 
the curvature radius of f(z), and Ca = pvov/a is the parameter that  is called a capillary number. 

The continuity equation for the tangential component of the stress vector is of the form 

2- f OV OU f2" f OU 0"0 f:tYy +(1-  (1.6) 
Excluding the pressure in the Navier-Stokes equations, which are written in variables u, v, and P by means 
of cross differentiation, we obtain, generally speaking, a fourth-order equation for the stream function ~. 
After that,  Eq. (1.1) can be regarded as the writing of this equation, where w is the function defined by Eq. 
(1.2). In this case, Eq. (1.1) expresses the  law of displacement of the  vortex w. With the pressure omitted, a 
similar procedure can be performed for boundary conditions as well [1]. Using (1.3), we obtain, for the stream 
function at the domain's  boundary, a rather cumbersome third-order equation containing mixed derivatives 
[2, 3]. It is difficult to solve and analyze such an equation, not to mention the vast amount  of preliminary work 
that  should he done by a researcher, especially if the determination of the free boundary is only a fragment 
of a large problem. It makes sense to introduce an intermediate function which obeys, as w in the governing 
equations, the law obtained on the basis of the initial equations. 

We introduce the notation. Let 

0~ I (1.7) vo = ~ -  y=S(-) 

be the fluid velocity in the direction of the tangent on the free surface. Since only the stationary fluid motion 
is considered and the free surface is a stream line in this case, the relation [4] 

Ors Ors OP 1 c9~ GI= (I .8)  
at + = as Re O. xlq + 

is satisfied on the free surface. Here and below, the t ime t is regarded as a parameter ,  G = h0e/v 2 is the 
Galilei number,  and g is the acceleration of gravity. 

As in [1], Eq. (1.5) can be presented as follows: 

Ca -1 1 2 0 v s  
P - P o =  Re R Re Os" (1.9) 
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Differentiating (1.9) with respect to s and substituting the result into (1.8), we obtain 

Ors Ors 2 02vs 
0---( + v, Os = R-"~ 0 7  + D, 

where 

(1.10) 

D = ~  -P0+ R---: Re0~ V~+:~ 

With the flow stationarity taken into account, one can derive an explicit relation for a vortex on the free 
surface [1] from condition (1.6): 

2 
W ~ - ~ V  s.  

The boundary condition for the stream function follows from (1.7), where vs is the solution of Eq. (1.10), 
which possesses remarl~ble properties such as the divergent form relative to v, and the simplicity of the 
solution. In addition, Eqs. (1.7) and (1.10) can be considered as an analog of the two-field method written for 
a free surface. To find the free surface, we use Eq. (1.4), which may be written in the form 

f, + l~-"~x 0r ~-28 =0. 

2. M e t h o d  of  So lu t ion .  We shall map the domain GB onto the rectangle 0 <~ ~ ~ L, 0 ~< r/~< 1 by 
means of the following transformation: 

x = ~, y = f(~)r/. 

After that, all the boundaries of the domain GB, including the free surface, coincide with the coordinate lines 
of the new grid, and each equation in (1.1) and (1.2) can be represented in the form 

[(  ) ( o~ o~ O )l 00 1 0 0(I) 0~, 00 0 B12 ~ + B22 + A(I) +F.  (2.1) 

Here 

BI1 = f(~),  BI2 = -hT], B22 = (1 + B~2)/f( O. (2.2) 

We note that BllB22 - B122 - 1. 
If �9 = w, then B = Re, A = Re, and F = 0. If �9 = r then B = I/A, A = 0, and F = Aw (A is the 

iteration parameter introduced in the solution of the Poisson equation for r 
We introduce the following notation: 

00 00 0r 00 00 0r 
V((I)) = BII " ~  + BI2 ~ -  -- Ar ~-, V(O) = BI2 ~ -  =~= B22 - ~  + Ar ~-. 

(2.3) 

(2.4) 

(2.5) 

Equation (2.1) takes the form 

0O 1 
o-7 = B/JUde) + v.(r + F, 

and the boundary conditions on the free surface (~/-- I) can be written as follows: 

o~ a-7 ~ a~ / + D, 

where 

O = ~ - ~ (  Po+ R-""~ - ~ e e  ~-+B22~)-Gf~; 

vd1+: . 
Or/ B22 ' 
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2 
w = ~ v,; (2.6) 

Of Or 
0-7 + ~ "  = O. (2.7) 

It is worth noting that the kinematic condition (2.7) now expresses the law of mass conservation. 
We shall search for the solution of Eq. (2.3) at each time step using the scheme of a stabilizing correction 

[5] taken in the form 

@k+~/2 _ @k 
1 [U ~ +,/2(@)] F, =B: (@) + v: + 

�9 (2.8) 

r B /  

Here 

vk+m(@) = B~@~ + B=@~ +'/~ + A@ k+~/~ O~ 
O~' 

R,,~k+112 _ A@k+ I 0r (2.9) uk+1(@) = BI'r + .... ~ a-~ 

It follows from (2.8) and (2.9) that Eq. (2.3) is first solved in the direction of ~/and then in the direction 
of ~. We shall show that the succession of the directions of the solution (2.3) is different for the functions r 
and co. It is important to note that the relations for mixed derivatives are taken from the previous semi-step. 
The stabilizing-correction scheme is classified as an economic difference scheme with fractional steps, in which 
the first step produces a complete approximation of the equation and the next step is a correction, whose 
purpose is to improve the stability�9 

To implement the scheme (2.8), (2.9), a rectangular computational grid is constructed in the standard 
manner in a rectangle which corresponds to the transformed domain GB: 

~ = ( n - 1 ) A ~ ,  A ~ = L / N B ,  n =  I , . . . , N N ,  N N  = N B  + I, 

r/m = (m - I ) A ~ ,  AT = I /MB,  m = I , . . . , M M ,  M M  = M B  + 1. 

We approximate differential expressions of the type (a11~)(, (a22~)~, (a,@)~, and (a2~),~ with second-order 
accuracy by the finite-difference analogs All, A22, A,, and A2, which have the traditional representation [5, 
6]. To approximate the mixed derivative, for example, (al~.@f)n, according to [7], we use the operator 

h , 2 @  = ( a 1 2 ) . , ~ + , ( @ . + , , . . + 1  - @ . - , , m + , )  - ( a 1 2 ) . , ~ - , ( @ . + 1 , ~ - 1  - @ . - , , ~ - 1 )  
4A~Ar/ 

The operator A21~ is determined similarly. The scheme (2.8) and (2.9) approximates (2.3) with accuracy 
O('r + h2) .  

After the derivatives are replaced by the corresponding finite differences in (2.8) and their difference 
analogs from (2.9) are substituted for V~(47) and U~(@), at each time semi-step, for all the internal points 
(n = 2 , . . . ,  N B  and m = 2 , . . . ,  M B )  we obtain a system of linear difference equations relative to @(~n, ~/m). 
The system has a three-diagonal structure with dominance of the diagonal matrix elements, and it can be 
effectively solved by the sweep method, with allowance for the boundary conditions. 

Equation (2.4) belongs to equations of the Burgers-Hopf type with the right-hand side. As was shown 
in [7, 8], in approximating and deriving a numerical solution, the representation of such an equation in a 
conservative form is of significance. We write (2.4) in the form 

a,,, t o  2 a (  1 a~_..,~ 
+ ~ ~ ( ' ) '  = R--~ 0-7 ~,.,2::~-~_ a~: + D at 

V "  ' - '( 
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and approximate the second term on the left-hand side as follows [8]: 

[ ,2 ,~k+l  [ , 2 ~ k + l  [t~ ~k+l t v xk t xk+l  i c9 (vs) 2 i tvsjn+ I - t v ,  j ,_ I 1 (vs)~+l ~ ~J,,+1-t s},-Itvs),,-1 
2 o~ 2 2A~ 2 2A~ 

The first term on the right-hand side is approximated in the upper time layer (k+ I) by the difference operator 
All. The remaining differential operators also have the traditional representation. For a derivative with respect 
to ti, a one-sided second-order approximation is used at the boundary of the domain, the value of aw/On being 
taken from the previous time step. The system of difference equations obtained has a three-diagonal structure, 
and it is solved by the sweep method. The boundary conditions for the solution (2.4) can be determined from 
the boundary conditions for r specified at the lateral boundaries of the domain GB and also from the physical 
formulation of the problem. 

3. Ca lcu la t ion  of  t he  Vor t ex  and  the  S t r e a m  Funct ion .  The central idea of the proposed method 
of solving Eq. (2.3) with boundary conditions (2.4)-(2.7) can be expressed as follows. We separate, among the 
basic grid functions w(~,, tim) and r tlm), a group of unknowns, which are called parameters and via which 
one can express the main unknown at all the internal points of the domain considered. For example, this will 
be the values of w at the domain's boundaries for the vortex and the values of r at the near-the-boundary 
points for the stream function. Having derived relations containing only these parameters, we solve these 
relations using the boundary conditions. With the parameters found, we restore all the values of the major 
unknowns at all the points of the domain. 

We shall describe the stages of a transition from the kth to the (k + 1)th time layer. Let the stream- 
function and vortex fields be known at time t/~ = kr. The position of the free surface at which these fields 
were found is assumed to be known as well. 

Stage I. We shall find the new position of the free surface which corresponds to the moment tk+l = 
(k + 1)r from Eq. (2.7) and the matrix of the coefficients Bll,  B12, and B22 from formulas (2.2). Solving Eq. 
(2.4), we find the boundary conditions for r and w on the free surface according to formulas (2.5) and (2.6), 
respectively. 

Stage I[. Equation (2.3) is first solved for the vortex in the direction of ~. The boundary condition for 
the vortex is taken from the lower time layer. The derived systems of difference equations are solved by the 
sweep method. After that, Eq. (2.3) is solved in the direction of t/. The solution of the systems of difference 
equations is searched for by the parameter-matching method [9], i.e., 

w(n, m) = P(n, m)w*(n) + Q(n, m)w**(n) + co(n, m), (3.1) 

where w*(n) are the still unknown vortex values at the lower boundary of the domain (ti = 0), w**(n) is the 
vortex value on the free surface (7/= 1), and P(n, m), Q(n, m), and co(n, m) are the known two-dimensional 
massives; note that P(n, 1) = 1, Q(n, 1) = 0, Co(n, 1) = 0, P(n, MM) = O, Q(n, MM) = 1, and co(n, MM) = O. 
We keep in mind the massives P(n, m), Q(n, m), and co(n, m) and pass to the next stage. 

Stage III. We shall consider a concrete condition at the lower boundary of the domain GB (ti = 0). Let, 
for example, the lower boundary be a rigid impenetrable wall in which the boundary conditions are given in 
the form of the viscous nonslip conditions. Using the Thorn formula [7] to relate the vortex and the stream 
function at the boundary, we can write 

r = o ,  , 0 " ( . )  = 
2 1 

r (Ati)2 f2 r (3.2) 

Relations (2.5) and (2.6) are satisfied at the upper boundary (7/= 1): 

Solving (2.3) for the stream function in the direction of ~ with allowance for (3.1) and (3.2), for each n we 
obtain a system of difference equations of the form 

-a,~r + bmr - cmem+l =Fm - A,~r (3.4) 
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(for simplicity, n-containing terms are omitted). It is natural to find a solution of (3.4), with allowance for 
the boundary condition for q: (3.3), in the form [10] 

e m =  S(m)r + T(m)r + r (3.5) 

where r and ~I'MB are the still unknown functions, and S(rn), T(m), and ~rn are the known massives; we 
note that 

S(1) = T(1) = r = 0, 

S(MM) = O, T(MM)= 1, (b(MM)= ATlv*r + f~ ] 
B22 rl=l" 

Substituting successively r and eMB into the left-hand side of (3.5), we derive a system of two linear equations 
to define these functions. After that, we restore r by formulas (3.5) at all the points of the domain. To simplify 
the description of the method, the derivative ar  approximated over the first order. Clearly, the order 
of approximation can be increased to any reasonable limits. On the right-hand side of Eq. (3.5) will appear 
the terms with the em values that were used for approximation of 0r at the upper boundary of the 
domain. Next, Eq. (2.3) is solved in the direction of ~ taking into account the boundary conditions. Stage III 
is repeated until the condition 

$ 

max,~,,n I./.$+1 <: ~7 
19'n,m 

where ,  is the iteration number and ~ is the prescribed accuracy, is met. 
Stage IV. After the third stage is completed, we find w*(n) by formulas (3.2) and then restore w by 

formula (3.1) at all the points of the domain. Thus, the transition to the new time layer is accomplished. 
After that, the process is repeated until the stationary solution is obtained. This condition is considered to 
be found if the condition 

(K is the given number of steps and e is the given accuracy) is satisfied. 
Remark. Assuming that the velocity along the normal is vn = 0 and ~forcing ~ the free surface at any 

moment of time to be the stream function [Eq. (1.8)], we thus introduce a restriction on the class of problems 
to be solved. It follows that the proposed method allows us to solve only problems that have stable stationary 
solutions. 

4. Examples of Calculation. To check the accuracy and efficiency of a numerical algorithm, it is 
necessary to use either exact solutions of model equations (if they are available) or approximate solutions that 
have been well studied and determined by other researchers. 

Example 1. We consider the problem proposed in [2], where there are both the exact solution of the 
linearized system and the approximate solution of the complete equations. Let a viscous incompressible fluid 
execute the motion in the infinite band -oo < x < oo, 0 ~< y <~ f(x). The velocity-profile conditions are 
specified at the lower boundary of the domain y = 0, which have the following form in terms of r 

2~r ~9r162 = 0. 
r = e m  sin ~ x, Oy 

The upper boundary of the fluid y = f(x) is a free surface. Equations (1.i) and (1.2) are dimensionalized, as 
was done in [2], by selecting ho, h2/v, and v as the scales of length, time, and stream function, respectively. 
We shall find the stationary solution of a problem that is subject to the following periodicity condition: 

r  = r  w(z+L,y) -w(z ,y ) ,  f ( x+L ,y )=f (x , y ) .  
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For these boundary conditions, the linearized problem has the analytical solution 

2k 2 (cosh k + k sinh k) 2r  
f0 = 1 - C r n  ( s i n h k c o s h k -  k)(G + Ca -1 k2/Re) cos kx, k = ~- .  (4.1) 

The stationary solution turns out to be symmetric owing to the periodicity condition and the symmetry 
of the velocity profile at the lower boundary. Passing over to the new variables (~, ~), we can write the boundary 
conditions for r and w at the left and right boundaries in the form 

We note that P0 in (2.4) is assumed to be equal to 0 as well. 
The vortex and the stream function are related at the lower boundary (r / = 0) using the Thom 

approach: 

~ . , ,  = - 2  f 2 ( ~ ) 2 .  ~,0~2).,," 
On the free boundary, the boundary conditions for r and w are specified by relations (2.5) and (2.6), 

respectively, where vs is the solution of Eq. (2.4). This method was employed for calculation on various grids. 
Figure 2 shows isolines of the stream function for a flow computed on a 21 • 11 grid for L = 3, Ca -1 - 0, 
Cm = 0.32, and G = 32. The curving of the free surface f (x)  is depicted in Fig. 3. The dashed curve indicates 
the graph of the function f0(x) defined by formula (4.1). The points denote the solution of the problem derived 
in [2] on a 24 • 21 grid. The amplitude of curving of the free surface 6 = max  f ( x )  - n~n f ( x )  deviates from 

the quantity 60 obtained from (4.1) by less than 1%. 
The problem was solved under the assumption that the surface tension of the fluid is zero. It follows 

from (4.1) that the maximum amplitude of curving of the free surface will be obtained for given G and era. 
However, the surface tension plays a very important role in the formation of the free surface, especially in 
small-sized domains. In addition, surface tension acts as a stabilizer of the solution. This fact was manifested 
in studying the solution of the problem, which was performed for the same values of L, G, and Cm that were 
considered above, and 0 < Ca -1 ~< 100. The calculation results that were obtained by the author coincide 
with those obtained in [2]. 

E x a m p l e  2. At the initial moment of time, the fluid which occupies the domain GB {0 ~ x <~ L, 0 
y <~ 1} is in a state of rest. Here x = 0, x = L, and y = 0 are solid impenetrable walls, and y = 1 is the free 
surface. The source of perturbation is the x-variable domain of external pressure Po = Po(x) applied to the 
free surface. 

The boundary conditions at solid walls are as follows: 

0r 0r 0r 
= ~'n L_-/, 0, o, = o, o, = o, - -  " , L _ - o :  o. 

The Thom condition is used to relate the stream function to the vortex at solid walls. 
To determine the boundary conditions on the free surface, we solve Eq. (2.4), where P0 is the given 
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function. To specify P0, we use the solution results of the first example. Having solved Problem 1 for Ca -1 = 
0.03 and P0 = 0, we obtain an explicit pressure distribution on the free surface according to formula (1.9) in 
the form of the function 

Figure 4 shows calculation results for Ca -1 = 0.03, G = 32, and P0 = 3P(~). The dashed curve 
indicates the position of the free surface at the initial moment of time, and the solid curves refer to the 
position of the free boundary and the isolines of the stream function at a certain intermediate moment of time 
before (Fig. 4a) and at the moment of (Fig. 4b) reaching the position. 

E x a m p l e  3. Let the fluid occupying the domain GB {0 ~ z ~ L, 0 ~ y ~ 2} be in a quiescent 
state at the initial moment of time. The source of perturbation is rotation of a pair of cylinders which are 
perpendicular to the plane of a liquid flow whose geometrical dimensions may be ignored. Such a source of 
perturbation can be treated as giving a pair of vortices inside the domain (Fig. 5): 

 (x0,1) = - x 0 , 1 )  = 

We specify the boundary conditions at the lower boundary of the domain GB (y = 0) in the form of the 
viscous nonslip conditions 

=0, 
--'-- ~ ' n  y=0 

and in the form of slip conditions at the left and right boundaries of the domain GB: 

The simplest method of solving the problem is to divide the domain GB into two subdomains, GB1 
and GB2, as was done in [11]. As a result, the source of perturbation is transferred from inside the domain to 
the boundary which is shared by both subdomains (the dashed curve). The upper subdomain GB1 is mapped 
onto a rectangle by the formulas described in Sec. 2. A 21 x 11 cMculation grid is constructed in each rectangle, 
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and the problem is solved locally in each subdomain with the following conditions at the common boundary: 

w(n, MM) GB2 = w(n, 1) GB, ' Oq'"~'~ [0~/(n,MM),GB 2 = 0~b0..~ (n,1),GB 1" 
To find the distribution of w at the common boundary, we solve the equation for the vortex in the 

direction of ( in the domain GB2 in the curve 77 = 1. The stabilizing-correction method yields the complete 
approximation of this equation at the first fractional step. The second condition is used to determine ~b in 
each of the subdomains GB1 and GB2 by the method described in See. 3 (Stage III). The Thom condition 
is employed to relate the vortex and the stream function at the lower boundary of the region GB2. Figure 5 
shows calculation results for b/a = 0.6, w0 = 12, G = 70, Ca -1 = 0, and Ca -1 = 0.5. Here b is the distance 
between the vortices, and a is the distance from the common boundary of subdomains GB1 and GB2 to the 
free surface of GB1 at the initial moment of time. The position of the free surface at the moment of reaching 
the position is denoted by the solid curve for Ca -1 = 0 and by the dashed curve for Ca -1 = 0.5. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01546). 
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